IPV6 DIFFUSION

School of Informatics Indiana University Bloomington 901 E. 10th Street Bloomington, IN

IPv6 Diffusion

- S-curve diffusion model
- Data extrapolated from ARIN
 - 60 months
- Results
 - Exhaustion of IPv4 is likely to occur before significant diffusion of IPv6

IPv6 and Economic Incentives

- Incentive alignment
- Related scholarship
 - Network effects
 - Network externalities
 - Possible Parallels
 - Patching
 - Privacy
 - Costs vs. Benefits

Network Effects

- Intrinsic and Network Benefits
 - Intrinsic
 - Derived from individual IPv6 adoption
 - Examples: No need for NATs, individually addressable devices
 - Network
 - Derived from aggregate IPv6 adoption
 - Examples: certainty of device id, enhanced security
 - Network benefits accrue to late adopters
 - Early adoption = altruism?

Patching

- Not everyone who
 - Could benefit from patching adopts
 - Could benefit from IPv6 adopts
 - How applicable are the findings?

Patching

- Findings
 - Camp: Vulnerabilities as externality
 - Ozment: Subsidies, mandates, bundling
 - Cavusoglu:
 - Lack of standardization/interoperability
 - Need for testing
 - Every network is unique
 - Concern for local idiosyncrasies

Parallels in Privacy

- Froomkin
 - Risks invisible, costs of privacy highly visible
 - IPv6: Risks invisible, costs both visible and uncertain

Parallels in Privacy

- Greenstadt et al
 - Privacy is a lemon's market
 - Merchants cannot prove privacy policy reliability
 - NSPs cannot prove value of IPv6
 - Lack of information in both cases

Parallels in Privacy

- Aquisti: Hyperbolic discounting of future risks
 - Privacy risks discounted at an ever increasing rate
 - IPv4 risks discounted
 - Exhaustion
 - Security

Costs and Benefits

- Costs are visible
 - Complex standard, potential lack of interoperability
 - Lack of maturity in technology
 - Fear of unknown
 - Routing table explosion?
 - Routing storms?
 - Total cost?
 - Tacit knowledge lost

Costs and Benefits

- Benefits invisible
 - Long-term advantage in tacit knowledge
 - For early adopters
 - Overall network benefit is security
 - Cannot be captured by early adopters
 - New commercial opportunities not quantifiable
 - Mobile
 - Ubiquitous computing

Costs

- Monetary Costs
 - Rowe estimates IPv6 adoption would cost approximately \$25 billion over 25 years
- Time Costs
- Personnel Costs
- Discrepancy between costs and expected benefits burdens early adopters

Security Costs

- IPv6 may temporarily increase security vulnerabilities
 - Interoperability issues
 - Maturity of code base
 - Mis-configuration due to inexperience
- Security costs weigh heavily on early adopters

Diffusion

- Probit model
 - Firm-specific diffusion
 - Compares characteristics of early adopters, current adopters and thus implicitly, late (e.g., non-adopters)
- S-curve macroeconomic model
 - Aggregates over time
 - Implicitly integrates network effects

Probit Model

- Large dataset for econometric comparison of decision variables
 - Industry
 - Firm-specific variables
 - Firm size
 - Type
 - Organizational Structure
 - Organizational structure
 - Geography

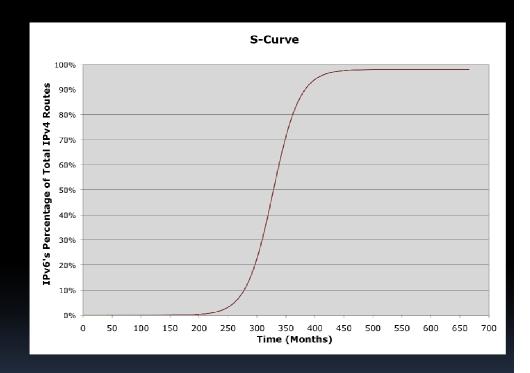
Probit Model

- Inadequate cross-section of current adopters to perform cross-section analysis
 - IPv6 adoption dominated by .net and .gov
 - Positive
 - Most informed parties are least concerned about unknowns wrt benefits
 - Negative
 - Difficult to determine factors driving adoption
- Early in adoption cycle for effective probit analysis

S-curve Model

- Non-constant rate of adoption
 - Improvements in technology quality
 - Network effect
 - Tacit knowledge
- Different types of consumers
 - Innovators
 - Early adopters
 - Laggards
 - Refusniks

Data Analysis

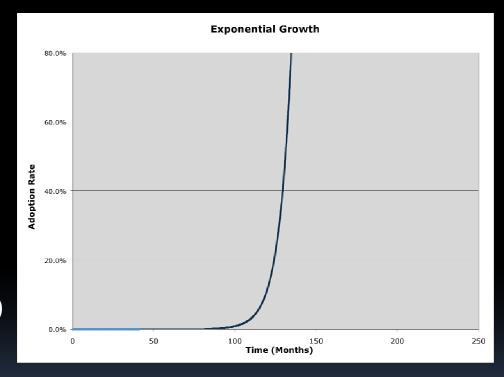

- Given current adoption rates, when might IPv6 have significant domestic market penetration?
- 3 models
 - Best-fit (most pessimistic) assumes no exogenous influence on demand for IPv6
 - Best-case assumes exogenous tipping point
 - Most optimistic given current data

Two Data Sets

- IP addresses and routes
 - Compare routes as advertised
- ASN
 - Compare Autonomous System Numbers
 - 1:1 comparison
- Cannot resolve real world uncertainty with models, but can bound uncertainty

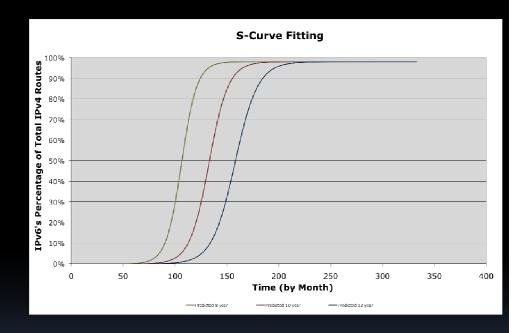
Route Count with Standard Model: Best Fit

- Crossover point at 4% of current routes
- Occurs mid-2019



Too Little, Too Late

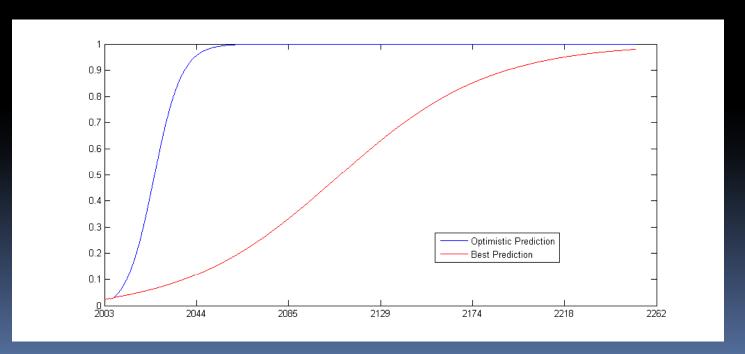
- At current rate of adoption, IPv6 will be 20% diffused in approximately 18 years
 - 80% diffusion in 22 years
- Analysis does not address possible exogenous forces
 - Demand push
 - e.g., IPv4 exhaustion
 - Supply pull
 - e.g., DoD commitment for suppliers


Best Case Route Count, Exponential Growth

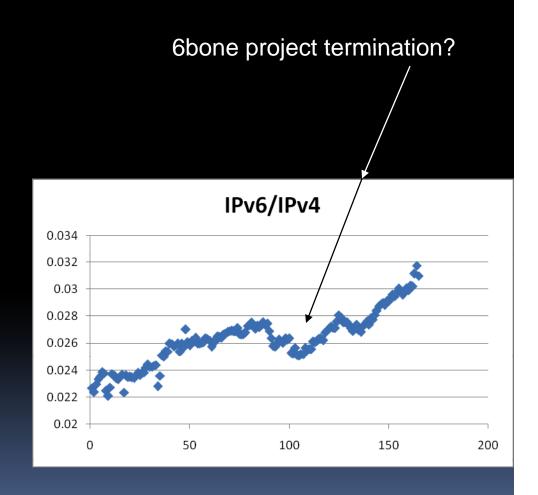
- Assumes exponential growth in the number of IPv6 adopters
 - Exogenous force not identified
 - e.g., model: force DoD adoption by 2010
- Major adoption still does not occur until early 2019
- Data has reversed since this work done

Forcing Function: Most Optimistic

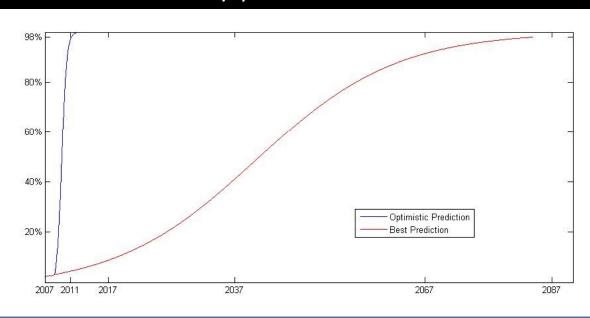
- 80% adoption in 8 years
 - Most optimistic that can be extrapolated from current data
- May not be sufficient



IPv4 versus IPv6 Routes Over Time


ASN Count with Best Fit

- One standard deviation from the follower coefficient
 - Best estimate with curve fit
 - Best possible result (coefficient + standard deviation)
- Results
 - 40 years to


Which Months Matter?

- Results are very sensitive
 - Beginning point
 - Initial conditions
 - Coefficient varies
- Truncate data to five month window
 - Best possible of best possible result

ASN Count, Truncated Data

- Cut to last six months
- Varying the follower coefficient
 - Best estimate with curve fit
 - Best possible result (coefficient + standard deviation)
- Results
 - Between six and seventy years

Summary

- Route data
 - Worst case > 20 years
 - Best case 8 years, 2016
 - Truncating data severely + one standard deviation of coefficient

Summary

ASN

- No duplicates, arguably better fit
- Worst case > 200 years
 - Data set to 2004 + one standard deviation of coefficient smaller
- Best case 6 years, 2014
 - Truncating data to six months + one standard deviation of coefficient larger

Why So Long?

- Market failure or technical failure?
- Misaligned incentive structures
 - Tacit knowledge loss, testing costs
- Lack of information
 - Invisible benefits, uncertain ...
- Network externalities against early adoption
 - Not at tipping point, what is tipping point?

Why So Long?

- Classic market inability to rationally address long-term risks v near-term cost
- Incentive alignment at institutional level?
 - Counter incentives to adoption
 - Ability to lock-out new entrants?
 - Direct map to use of security

Promoting IPv6 Adoption

- Government support of adoption
 - Subsidies decrease adoption costs
 - Increase incentives for production
 - Lower long-term costs of production, lower ultimate cost of adoption
 - Demand pull
 - Federal and state adoption to address network effects
 - Fines, tax credits, technical standards & requirements

State of the World

- Chinese, Japanese, and Korean governments leading the transition to IPv6
 - Incentives
 - Funding
 - Contractual obligations
- No data comparison
- Level of deployment in Europe called "imperceptible" in 2004 final report of the European IPv6 Task Force

Implications

- On a global scale IPv6 adoption benefits outweigh costs - but timely adoption ...
- In the U.S. & Europe existing IPv4 infrastructure and high investment cost of switching are larger than in developing countries

Implications

- Potential implications for international competitiveness
 - Tacit knowledge
 - Support industries
 - Loss of lead in network science
 - Ubiquitous and mobile systems
 - Secure broadband penetration
 - Innovation enabled by end-to-end addressing

Observations

- U.S. IPv6 adoption rate not comparable to international rate
- High switching costs and low perceived benefits discourage early domestic adoption
- Government support could encourage more timely adoption
- Effect of IPv4 exhaustion will be highly variant across the globe

Out of Box Questions

- Can/will "unbundling" help with IPv6 adoption?
 - Strictly re-numbering
- IPv6 and emerging services
 - Can lack of interoperability with "old" web can be a feature
 - In-home monitoring, private family sharing networks
 - Medical device manufacturers
 - Create new value with IPv6 strengths

Why *Not* Pay Adopters?

- Solve the human problem
 - Certification of individuals IPv6 engineers
 - Leader certification
 - Team with universities
 - Define curriculum or knowledge base
 - CISSP model
 - Give it away free until people want it

Usability Matters

- Security has only recently discovered that usability matters
 - Formal studies of IPv6 configuration
 - Assist engineers with transition
 - Assist consumers with adoption
 - Merge with new services
 - Network engineers are users too

Questions from *INFOSec*on

- Information availability
 - TCO Case studies
 - Mobility cost
 - Device fraud
 - Security cost
- Pricing with co-existence
 - Plan for pricing transition
 - Utilize increasing value of route table entry, peer pricing and production

References

- Economics of Information Security http://infosecon.net
- L. Jean Camp http://www.ljean.com
- Hillary Elmore & Debin Liu
- http://www.hillaryelmore.com& http://www.liu-debin.com