IPv6 Resource Management - RIR Proposal
Background and Motivation

• IANA-RIR allocation system
 – Unchanged in 10+ years
 – Major IPv4 address space fragmentation
 • Many ISPs have many separate prefixes
 – IPv6 should not go the same way

• Proposal for new system for IPv6
 – Designed to minimise fragmentation
 • Most ISPs will have 1 prefix for many years

• Document development
 – Document jointly authored by RIRs
 – Published as ripe-261
Current Allocation System

• IANA allocates to RIR
 – RIR maintains a pool of addresses
 – Attempts to maximise aggregation within pool
 • Short-term reservations
 • Sparse allocation

• RIRs allocate to LIRs/ISPs
 – When pool runs low, RIR receives more from IANA
 – Subsequent allocations to existing ISPs cannot be aggregated
Current Allocation System (v4)

IANA

RIR

1. 212/8
2. 212.100/16
3. 212.101/16
4. 213/8
5. 213.50/16

LIR/ISP

ISP has 2 prefixes after 3 requests!
Current Allocation System

- **IPv4**
 - IANA to RIR allocation unit: /8
 - RIR to LIR/ISP: /20… /10…
 - Many ISPs have multiple prefixes

- **IPv6**
 - IANA to RIR allocation unit: /23 (64 x /29)
 - RIR to LIR/ISP: /32 minimum
 - IPv6 swamp is being created already
 - Maximum reservation per ISP is /29
Proposal

• “Sparse Allocation” system
 – Maximise “distance” between separate portable allocations
 – Maximise chance of aggregation of subsequent allocations
 – Implemented as list of address prefixes to be allocated in order

• For example…
Proposal

• Sparse allocation system will maximise aggregation
 – Simple system, easily understood
 • Otherwise known as “binary chop”
 – Used in practice by RIRs already (IPv4)
 • Within large address blocks (e.g. /8)
 – Used in other allocation systems
 • e.g. dynamic memory allocation
Proposal

- Benefits increase as address pool increases
 - System breaks down in “overflow condition”
 - i.e. where pool becomes too crowded or full, and another pool must be allocated
 - Therefore RIRs propose to share a single global pool
 - Known as Common Address Pool (CAP)
 - Managed by RIRs jointly, under “Common Registry Service” (CRS)
Proposal

• CAP needs to be as large as possible
 – to ensure long life of single pool
 – to avoid unaggregatable allocations

• So…
 – IANA to allocate 2000::/3 (FP001) for CAP
 • For management by CRS
 • This address space already designated by IETF as Global Unicast, for allocation by RIRs
Allocation Request Process

1. First IPv6 allocation to ISP
 – RIR sends request to CRS for new block of specified size
 – CRS allocates next entry from list of start addresses

2. Subsequent allocation to ISP
 – RIR sends request to CRS for expansion of existing allocation for that ISP (to certain specified size)
 – CRS provides extension of existing allocation
 • If extension is not available, new prefix must be allocated
Avoiding Fragmentation

• Distance between neighboring allocations is initially very large
 – “Dumb” algorithm can be used initially

• However, some ISP allocations will grow faster
 – Threatening to “collide” with neighbour

• “Smarter” algorithm for new allocations
 – e.g. If existing preceding allocation has grown to occupy more than a certain % of address space available to it, select next start address from the list
Avoiding Fragmentation

• “Smarter” algorithm…

However note that this is a far future scenario…
Other Details

• Review of allocation process
 – Initial set of allocations limited to 2048
 – Providing each ISP with up to /14 (!)
 • Commence review after 1024th entry (2-3 years?)

• Common Registry Service (CRS)
 – Function to rotate between RIRs
 – ‘Master’ server at one RIR
 • Mirror servers elsewhere

• Reverse DNS requirements (ip6.arpa)
 – CRS administers master DNS server
 – Other RIRs will be mirrors of master
Disadvantages

• Requires single large allocation
 – Maybe “Putting all our eggs in one basket”
 – RIR proposal is to utilise very large block, only one-eighth of IPv6 address space

• Not possible to identify specific blocks allocated to specific RIRs/regions
 – e.g. for filtering purposes
 – RIRs note that this is not possible in IPv4 due to historical allocations
Further information

• Document available from
 – http://www.ripe.net/ripe/docs/ipv6-sparse.html

• APNIC IPv6 SIG
 – http://www.apnic.net/meetings
 – http://www.apnic.net/lists