DNSSEC Overview ARIN+NANOG On The Road

> **Duane Wessels** Verisign Labs

Version: 2012-02-05

DNS Security

- DNS has no security
- One UDP packet for query, one UDP packet for response
- Must rely on source IP to match response to query
- Easily spoofed
- Clever resolvers help a lot
- But we need something better

Why do you need to know this stuff?

Why do you need to know this stuff?

 Found 2 DS records for nasa.gov in the gov zone Found 2 RRSIGs over DS RRset RRSIG=58219 and DNSKEY=58219 verifies the DS RRset Found 2 DNSKEY records for nasa.gov DS=8461/SHA1 verifies DNSKEY=8461/SEP Found 2 RRSIGs over DNSKEY RRset RRSIG=8461 and DNSKEY=8461/SEP verifies the DNSKEY RRset www.nasa.gov is a CNAME to www.nasawestprime.com Found 1 RRSIGs over CNAME RRset RRSIG=58830 and DNSKEY=58830 verifies the CNAME RRset 	gov	 Found 2 DS records for gov in the . zone Found 1 RRSIGs over DS RRset RRSIG=49656 and DNSKEY=49656 verifies the DS RRset Found 4 DNSKEY records for gov DS=53138/SHA1 verifies DNSKEY=53138/SEP Found 2 RRSIGs over DNSKEY RRset RRSIG=53138 and DNSKEY=53138/SEP verifies the DNSKEY RRset
	nasa.gov	 Found 2 DS records for nasa.gov in the gov zone Found 2 RRSIGs over DS RRset RRSIG=58219 and DNSKEY=58219 verifies the DS RRset Found 2 DNSKEY records for nasa.gov DS=8461/SHA1 verifies DNSKEY=8461/SEP Found 2 RRSIGs over DNSKEY RRset RRSIG=8461 and DNSKEY=8461/SEP verifies the DNSKEY RRset www.nasa.gov is a CNAME to www.nasawestprime.com Found 1 RRSIGs over CNAME RRset RRSIG=58830 and DNSKEY=58830 verifies the CNAME RRset

DNSSEC Timeline

- 1993: Discussion of secure DNS begins
- 1994: First draft of possible standard published
- 1997: RFC 2065 published (DNSSEC is an IETF standard)
- 1999: RFC 2535 published (DNSSEC standard is revised)
- 2005: Total rewrite of standards published
 - RFC 4033 (Introduction and Requirements)
 - RFC 4034 (New Resource Records)
 - RFC 4035 (Protocol Changes)
- July 15, 2010: Root zone signed
- July 29, 2010: .edu signed
- December 9, 2010: .net signed
- March 31, 2011: *.com* signed

What **DNSSEC** Does

- DNSSEC uses digital signatures based on public key cryptography to provide:
 - Data origin authentication
 - "Did this DNS response really come from the foo.com zone?"
 - Data integrity
 - "Did an attacker (e.g., a man-in-the-middle) modify the data in this response since it was signed?"
- Bottom line: DNSSEC offers protection against spoofing of DNS data

What DNSSEC Doesn't Do

- DNSSEC does not:
 - Provide any confidentiality for DNS data
 - I.e., no encryption
 - Most data in the DNS is public, after all
 - Address attacks against the name server itself
 - Denial of service,
 - Packets of death,
 - etc.

Key Pairs

- In DNSSEC, each zone has a public/private key pair
- The zone's public key is stored in the new DNSKEY record
- The zone's private key is kept safe
 - Private key storage options in increasing order of paranoia:
 - In a file readable only by root
 - In an encrypted file (decrypted only for signing)
 - Stored offline
 - In an HSM (Hardware Security Module)

The DNSKEY Record

test.com. DNSKEY	<pre>256 3 5 (AwEAAda013Wp4CQaUBrExCIRZCYpT5K93FIP vOXfTkgT4LtMzEwRYnAONhKqpAaC7rAm2Jn+ VlYnzIqmwELmn0EqI/e7cV8Bao94dX3xdcK+ kZ6t5Of1hOLalyn/nsKZlH247VsEE62lHQNB 4nxPBHIpwURLqd9ilTsSeLxG56PdCVuJ) ; key id = 41148</pre>
DNSKEY	257 3 5 (AwEAAckFh2HajtLkZr5JpNxjuhwnCOSlMuoV ZKs+EfmrEoQ+oUs1KM5Nc93XPdq4WTbNwBi8 MYzdBDVZQys0byZzrm3VaPjJ/FIFOG8unhyn
DINSKEY record's fields:	5vTvuKZ8w9EhPd0rim0MBCV3jNetk/E9

- 256 or 257, the 16-bit flags field) ; key id = 46894
 - Bit 2⁸ is set to indicate a DNSSEC zone key
 - Bit 2⁰ is set to indicate a key-signing key (KSK)
- 3, the protocol octet
 - Will always be 3 to signify DNSSEC
- 5, the DNSKEY algorithm number (RSA with SHA1)
- The public key itself, in base64
 - 1024-bit RSA keys in this example

Digital Signatures

- A zone's private key signs each resource record set (RRset) in a zone
 - RRset: records with same owner, class and type
 - Domain name *www.test.com*, class IN, type A
 - www.test.com / IN / A
- Each RRset's digital signature is stored in an RRSIG record
- Not all information in a zone is signed:
 - Delegation information is not signed
 - Delegating NS records and corresponding A and AAAA records (glue)
 - Authoritative copies of these records in the child zone, not the parent

The RRSIG Record

www.test.com.

- 86400 A 86400 A 86400 RRSIG
- 192.0.2.1 192.0.2.2 A 5 3 86400 20090507235959 (20090501000000 41148 test.com. s8dMOWQjoTKEo1bsK+EYUY+32Bd84300FcJf lqthv1u60DVDVobllhqt0AaiD/dlnn7Yask6 xGe0u01Bbm06bsq28KP5rf9cR4bmmx68V1pQ IKcm1Tx/Y1ixJHFiRMxMoEoiZp1sR9x/YIHL C7F+4Xuk8sePEzz9vA92puhtkSA=)

• RRSIG record's fields:

- **A**, the type of records signed
- **5**, the digital signature algorithm used (RSA with SHA1)
- 3, the number of labels in the signed name
- 86400, the original time-to-live on the records signed
- 20090507235959, when the signature expires
- 20090501000000, when the records were signed
- 41148, the key ID/tag/footprint
- test.com., the signer's name
- Finally, the digital signature itself, in base64

Proving Something Doesn't Exist

- Negative errors:
 - Name Error (NXDOMAIN)
 - "No such data" (NOERROR/0)
- How do you prove cryptographically that the RRset doesn't exist?
- Could sign negative responses "on the fly"
- Or sign something ahead of time: the **NSEC** record

The NSEC Record

- The NSEC record...
 - Resides at a given domain name
 - Specifies what types exist at that name
 - Points to the next domain name in the zone
- The NSEC record spans a gap between two domain names in a zone
- Notion of a "next" record implies a canonical order
- Labels in a domain name are sorted by:
 - Shifting all characters to lowercase
 - Sorting non-existent bytes ahead of "0"
 - Sorting lexicographically from the highest-level label to the lowest

Ordering a Zone

• So the following example zone:

test.com.	SOA	ns.test.com. root.test.com. (
		2009041800 lh 10m 30d 1d)
	NS	ns.test.com.
	A	10.0.0.1
	MX	0 mail.test.com.
ns	A	10.0.0.1
mail	A	10.0.2
WWW	A	10.0.3
ftp	CNAME	www.test.com.
west	NS	ns.west.test.com.
ns.west	A	10.0.5
east	NS	ns.east.test.com.
ns.east	А	10.0.0.6

Ordering a Zone

• Would sort to:

test.com.	SOA	ns.test.com. root.test.com. (2009041800 1h 10m 30d 1d)
test.com.	NS	ns.test.com.
test.com.	А	10.0.1
test.com.	MX	0 mail.test.com.
east.test.com.	NS	ns.east.test.com.
ns.east.test.com.	A	10.0.6
ftp.test.com.	CNAME	www.test.com.
mail.test.com.	A	10.0.2
ns.test.com.	А	10.0.1
west.test.com.	NS	ns.west.test.com.
ns.west.test.com.	A	10.0.5
www.test.com.	A	10.0.3

Adding NSEC Records

• And here's the zone with NSEC records added:

test.com.	SOA	ns.test.com. root.test.com. (
	20090	41800 lh 10m 30d 1d)
test.com.	NS	ns.test.com.
test.com.	A	10.0.1
test.com.	MX	0 mail.test.com.
test.com.	NSEC	east.test.com. A NS SOA MX NSEC
east.test.com.	NS	ns.east.test.com.
east.test.com.	NSEC	ns.east.test.com. NS NSEC
ns.east.test.com.	A	10.0.6
ns.east.test.com.	NSEC	ftp.test.com. A NSEC
ftp.test.com.	CNAME	www.test.com.
ftp.test.com.	NSEC	mail.test.com. CNAME NSEC
mail.test.com.	A	10.0.2
mail.test.com.	NSEC	ns.test.com. A NSEC
ns.test.com.	A	10.0.1
ns.test.com.	NSEC	west.test.com. A NSEC
west.test.com.	NS	ns.west.test.com.
west.test.com.	NSEC	ns.west.test.com. NS NSEC
ns.west.test.com.	A	10.0.5
ns.west.test.com.	NSEC	www.test.com. A NSEC
www.test.com.	A	10.0.3
www.test.com.	NSEC	test.com. A NSEC

Notes on NSEC

- The final NSEC "wraps around" from the last name in the ordered zone to the first
- Each NSEC record has a corresponding RRSIG

NSEC In Use

- Looking up *north.test.com*: the name doesn't exist
 - The response has return code NXDOMAIN and includes:

mail.test.com. NSEC ns.test.com. A NSEC

"No domain names in the zone between *mail.test.com* and *ns.test.com*"

- Looking up TXT records for *mail.test.com*: the name exists but has no TXT records
 - The response has return code NOERROR, no records in the answer section, and includes:

mail.test.com. NSEC ns.test.com. A NSEC

"No TXT records for *mail.test.com*, only A and NSEC"

Chain of Trust

- There are no certificates in DNSSEC
- The trust model is rigid
- Only a zone's parent can vouch for its keys' identity
- The "chain of trust" flows from parent zone to child zone

Types of Keys

- Signed zone has DNSKEY RRset at apex
 - Usually contains multiple keys
 - One or more key-signing keys (KSKs)
 - One or more zone-signing keys (ZSKs)
- KSK
 - Signs only the DNSKEY RRset
- ZSK
 - Signs the rest of the zone
- Why two types of keys?
 - KSK change requires interaction with parent
 - ZSK change has no external dependencies

Delegation Signer (DS) Records

- The **Delegation Signer (DS)** record specifies a child zone's key (usually the KSK)
 - DS record contains a cryptographic hash of child's KSK
- A zone's DS records only appear in its parent zone
 - Along with NS records at a delegation point
- DS records are signed by the parent zone

The DS Record

;	This	is	an	excerpt	of the	.com zo	one data file
te	st.co	om.			86400	NS	ns1.test.com.
					86400	NS	ns2.test.com.
					86400	DS	46894 5 1 (
							A6879FC55299A0985CF0D72B0EDAD528C10E
							FD00)
					86400	DS	46894 5 2 (
							BEA484A06FBB93034A3FD9CE8C7F37391B0B
							FAA2AA58B1EB09A5B59DFBAF304B)
					86400	RRSIG	DS 5 2 86400 20090507235959 (
							20090501000000 810 com.
							D05vBDjM9hb01uaMk/GYG81aZWGCDp/Hn90P
						vpthFK4gPMwCvX+r3HQeKyWYzbEnr/mIAO1L	
							60Lhi5vvbD48+UulDyplXVJ37nJrt9DiFN75
 DS record's fields: 							z7nk2rjEctoNSZ3BI1NVwtvFl5zBHSDqih2x
				rd's fiel	ds:		/dRJQ2ICfDVIdC3tdV8IPV0zJWE=)

- **46894**, the key ID/tag/footprint
- **5**, the DNSKEY algorithm number (RSA with SHA1)
- The digest type: **1** is SHA-1, **2** is SHA-256
- Finally, the digest, in hexadecimal

Unsigned Zone Example: *example.com*

example.com.SOA<SO</th>example.com.NSns2example.com.NSns2example.com.A192example.com.MX10mail.example.com.A192www.example.com.A192

A <SOA stuff>
ns1.secure-hoster.net.
ns2.secure-hoster.net.
192.45.56.67
10 mail.example.com.
192.45.56.68
192.45.56.67

Signed Zone Example: example.com

example.com. SOA <SOA stuff> example.com. RRSIG SOA <RRSIG stuff> example.com. NS nsl.secure-hoster.net. example.com. NS ns2.secure-hoster.net. example.com. RRSIG NS <RRSIG stuff> example.com. 192.45.56.67 Α example.com. RRSIG A <RRSIG stuff> example.com. 10 mail.example.com. MX example.com. MX <RRSIG stuff> RRSIG example.com. DNSKEY <Key that signs example.com DNSKEY RRSet> ; KSK example.com. <Key that signs the rest of example.com zone> ; ZSK DNSKEY example.com. DNSKEY <RRSIG stuff> RRSIG example.com. mail.example.com. SOA NS A MX DNSKEY RRSIG NSEC NSEC example.com. NSEC <RRSIG stuff> RRSIG mail.example.com. Α 192.45.56.68 mail.example.com. RRSIG A <RRSIG stuff> mail.example.com. NSEC www.example.com. A RRSIG NSEC mail.example.com. NSEC <RRSIG stuff> RRSIG www.example.com. 192.45.56.67 А www.example.com. RRSIG A <RRSIG stuff> www.example.com. example.com. A RRSIG NSEC NSEC **NSEC <RRSIG stuff>** www.example.com. RRSIG

Trust Anchors

- You have to trust somebody
- DNSSEC validators need a list of trust anchors
 - Keys (usually KSKs) that are implicitly trusted
 - Analogous to list of certificate authorities (CAs) in web browsers
- Trust anchor store can be updated via:
 - Manual process
 - Static configuration
 - DNSSEC "in band" update protocol
 - RFC 5011
 - Other trusted update mechanism
 - From name server or operating system vendor

Example Chain of Trust

- We are validating A records for www.verisign.com.
- Trust anchor for root zone KSK →
 - Statically configured in the DNSSEC validator
- root KSK → root ZSK → .com DS →
 - In the root zone
- .com KSK → .com ZSK → verisign.com DS →
 - In the .com zone
- verisign.com KSK → verisign.com ZSK → www.verisign.com A
 - In the *verisign.com* zone

NSEC3

- **NSEC3** is an alternative to NSEC providing:
 - Non-enumerability
 - Opt-Out
- Significant standards effort by Verisign, Nominet (.uk registry) and DENIC (.de registry)
- RFC 5155
 - Published February, 2008

Non-Enumerability

- Stops zone enumeration via "zone walking" the NSEC chain
- NSEC3 chain is hash of names
- Example:
 - Zone: alpha.com, bravo.com, charlie.com
 - NSEC chain:
 - alpha.com → bravo.com → charlie.com
 - NSEC3:
 - H(bravo.com) → H(alpha.com) → H(charlie.com)
 - adfjkhjim.com → djadfjhifj.com → qsfiudfiud.com

Opt-Out

- Standard DNSSEC:
 - Every name in a zone has an NSEC
 - Including delegations (NS records)
- Opt-Out DNSSEC:
 - Only secure delegations have an NSEC
 - I.e., delegations to zones that are themselves signed
- Better for large zones like .com
 - Many names, but few secure delegations
 - Shorter NSEC3 chain
 - Fewer signatures
 - Smaller signed zone

Changes for DNSSEC

What will DNSSEC be used for?

- Protecting applications against DNS spoofing attacks
 - Recursive name servers will perform DNSSEC validation and throw away bad data before it reaches downstream clients
 - Eventually some stub resolvers and even applications may do their own DNSSEC validation
- Opening up DNS as a secure repository for various kinds of data
 - Web site authentication and privacy
 - X.509 certificates authenticated by DNSSEC
 - Self-signed or "stapled" to a particular Certificate Authority
 - IETF DANE Working Group
 - Mail origin authentication
 - SSH host key authentication
 - Publication mechanism for other public keys?
 - Secure routing information repository?

