

BGP made easy

John van Oppen Wave / Spectrum AS11404

What is **BGP**?

- Snarky answer: RFC-4271
- BGP is an Exterior gateway protocol, the only one used on the public Internet and is used for inter-Autonomous System routing. (IE between discrete networks)
- BGP distributes (signals) the path to every destination on the Internet, the core of major providers typically don't contain a default route, they contain the paths to every prefix on the Internet.
- BGP learns multiple paths to a given route and selects the best path, only best path is sent between routers.

What is an Autonomous System?

Typical traits:

- Usually a network of one or more routers redundantly interconnected.
- Controlled by a single administrative domain (one company could have several ASNs but a given ASN is typically controlled by a specific group)
- Common routing policy
- Identified by a globally unique AS Number (ASN)

ON THE ROAD

Typical rationales for running BGP

- Multihoming / Provider redundancy
- Equipment / Port redundancy
- Peering (typically larger ASes)
- Connectivity quality (better paths)

Types of peering relationships

- Transit (routes that cost money to send traffic across)
- Peering (typically free, you see my customers, I see yours without charge) - peers across NWAX would be a good example of this type of relationship
- Customer (routes that are sourced from paying customers)
- Typically type of relationship dictates localpreference setting (50, 95 and 110 in this example)

Enforcing relationships across peers

- Typical problem: I don't want to send routes received from my transit to someone who does not pay me.
 - Common solution: AS-path filtering, prefixes lists or a combination.
 - Best solution: add in community strings as tags, filter on ingress.

Filtering tools for BGP routes (cisco)

7

- Prefix lists can be applied directly to BGP peer configuration
- Route maps can match various things, the most important for BGP are:
 - prefix lists
 - As-path access lists
 - Community lists
 - -Metric

Communities, tags for routes!

- Community strings allow routes to be tagged at ingress with to tell the rest of the AS what to do with them.
- Filtering only at ingress works for very small ASNs and very large ASNs.
- Allows for large ASes with lots of customer routes to scale by only filtering on customer sessions.
- Egress filter policy can be setup to deny by default (IE no community of the right type attached to route means the route is not exported).
- Allows easy filtering to prevent internal routes from being sent to customers .

Examples of community assignments from AS11404

Communities used in examples:

11404:991 announce to customers11404:992 announce to peers and customers11404:993 announce to transit, peers and customers

11404:1000 All transit routes 11404:2000 All Peer routes

<u>http://as11404.net</u> has more of a list if you want a broader example.

Filtering in action (towards a customer)

Cisco example, showing basic portions of the BGP filtering configuration

neighbor 192.0.2.2 remote-as 54858 neighbor 192.0.2.2 prefix-list as54858-in in neighbor 192.0.2.2 route-map as54858-in in neighbor 192.0.2.2 route-map full-tables-out out neighbor 192.0.2.2 maximum-prefix 20

ip prefix-list as54858-in seq 5 permit 64.187.160.0/20 ip prefix-list as54858-in seq 10 permit 198.244.96.0/20

route-map as54858-in permit 500 match ip address prefix-list as54858-in set local-preference 110 set community 11404:993 11404:3000 11404:3010

route-map full-tables-out permit 1000 match community full-tables-out

ip community-list standard full-tables-out permit 11404:993 ip community-list standard full-tables-out permit 11404:992 ip community-list standard full-tables-out permit 11404:991 ip community-list standard full-tables-out permit 11404:1000 ip community-list standard full-tables-out permit 11404:2000 Always place a max prefix limit on customers and peers (protection from route leaks)

Inbound prefix list applied twice (not required, but nice to protect from typos)

An as-path filter could be applied here too

Outbound route filtering (internal routes not sent to customers)

Filtering in action (towards a transit)

Cisco example, showing basic portions of the BGP filtering configuration

neighbor 207.8.14.109 remote-as 2828 neighbor 207.8.14.109 description XO Transit neighbor 207.8.14.109 route-map as 2828-in in neighbor 207.8.14.109 route-map as 2828-out out

route-map as2828-in permit 100 set metric 0 set local-preference 50 set community 11404:1000 11404:1070 11404:1270 additive

route-map as2828-out permit 1000 match community as2828-out set metric-type internal

ip community-list standard as2828-out permit 11404:993 ip community-list standard as2828-out permit 11404:9937 There is more configuration than this, this is just the community specific part

Ignore meds, force network to use nearest exit

Lower local-pref than default (we pay for this route)

Send MEDs based on IGP

COST (make the carrier haul to nearest ingress point)

Outbound route filtering

(match only routes tagged to announce to transit, validity of routes with this tag was assured at ingress)

ON THE ROAD

Real world examples of communities and local pref (AS11404)

cr1-pdx>show ip bgp 64.187.160.0/20 BGP routing table entry for 64.187.160.0/20, version 221286214 Paths: (2 available, best #1, table Default-IP-Routing-Table) Multipath: eBGP iBGP

Advertised to update-groups:

54858

208.76.153.113 (metric 517) from 208.76.153.76 (208.76.153.76) Origin IGP, metric 0, localpref 110, valid, internal, best **Community: 11404:993 11404:3000 11404:3010** Originator: 208.76.153.113, Cluster list: 208.76.153.76

- Higher than default localpref (110)
- Tagged as customer route (11404:3000) from Seattle (11404:3010)
- Tagged to announce to transit (11404:993)

- IGP (OSPF) metric (towards 208.76.153.113)
 - Loopback address of route refelctor

Loopback address of ingress router

Q&A

More info?

Check the relevant NANOG presentations:

Philip Smith NANOG 50:

http://www.nanog.org/meetings/nanog50/presentations/Sunday/NANOG50.Talk33.NANOG50-BGP-Techniques.pdf

Jason Schiller at NANOG 53:

http://www.nanog.org/meetings/nanog53/presentations/Sunday/bgp-101-NANOG53.pdf

Feel free to contact me:

John@vanoppen.com

206-973-8302