# ARIN's RPKI Trust Anchor Demystified

Mark Kosters ARIN Chief Technology Officer



### The RPKI Ecosystem and Trust Anchors

The Resource Public Key Infrastructure (RPKI) ecosystem is comprised of



Repositories that contain Route Origin Authorizations (and soon Autonomous System Provider Authentication [ASPA] objects), certification revocation lists, and manifests



Validators that validate ROAs and ASPA objects feeding results to the ISP border routers To validate the objects, the validators need to have a "bootstrap" to find out the root of the certificate tree and cryptically validate the secured objects (more RPKI hierarchy later).

The bootstrap information is called a Trust Anchor (TA).

Configured on each validator

The RPKI Ecosystem and Trust Anchors



### Agenda

Brief tutorial on RPKI Certificates ARIN's structure for ARIN-issued resources Why the Trust Anchor is important

Designing and exercising the signing process



# **Brief Tutorial on RPKI Certificates**













# **ARIN's Structure for RPKI Resources**

## **ARIN's Trust Anchor Configuration**



# **ARIN's Trust Anchor Configuration**

#### Offline Trust Anchor

- Solely responsible for signing the online operational certificate
  - The servers are NOT on the network
  - The key is protected by offline hardware security modules (HSMs)
- Online Operational Certificate
  - Responsible for signing Organizational Certificates
    - The servers are on the network
    - The keys are protected by online HSMs
- Organization Certificate
  - Responsible for signing ROAs and ASPAs or Delegated Certificates
    - The servers are on the network
    - The keys are protected by online HSMs

# **Offline Trust Anchor Details**

Solely responsible for signing the online operational certificate

- The servers are NOT on the network
- The keys are protected by offline hardware security modules

Online Operational Certificate signing request transferred by hand to/from the Offline Operational Certificate servers Keys stored on the hardware security module

# **Offline Trust Anchor**

The Offline Operational Certificate servers and their keys are protected by:

- Not being connected to the network
- Requiring physical access by a third person (operations person) with multi-factor entry to safe
- Monitoring safe with cameras
- Logging access entry
- Storing keys at two sites with dual-custody safes:
  - Can only be opened by two separate people (aka keyholders) with two separate combinations

### **Operational Online Certificate**

- Responsible for signing Organization Certificates
  - The servers are on the network
  - The keys are protected by online HSMs
- Online operational certificate servers at two sites

# **Organization Certificate**

#### Also called a **Resource Certificate**

- Signs ROAs
- Signs ASPAs
- Signs manifests
- Signs certificate revocation lists (CRLs)
- Signs over delegated certificates

#### **Hosted Mode**

ARIN is responsible for signing all ROAs, ASPAs, manifests, and CRLs on behalf of the customer

#### **Delegated Mode**

The customer is responsible for signing ROAs, ASPAs, manifests, and CRLs



# Why the Trust Anchor is Important

# Why the Trust Anchor is Important

- RPKI is a system based on trust
- Trust in a hierarchal system starts at the top of the tree
- ARIN is at the top of the tree

#### If there is compromise

- Hijacks of existing space can be created without knowledge of the resource holder
- Hijacks of space outside of ARIN's region can be placed into ARIN's RPKI system
- Compromise will lead to manual configuration settings on validators

As a result, we are very careful about ensuring strong security



# **Designing and Exercising the Process**

## **Building this System and Inserting Trust**

- Did not want to reinvent the wheel
- The DNS root is very similar to the RPKI trust anchor
- ICANN has a very well documented process for root DNS key signing
- ARIN staff witnessed the DNS root key signing process, and implemented methods to our own signing ceremony
- ARIN uses HSMs for secure storing of material

# **Signing Ceremony Overview**

- The offline operational certificate has a six-month lifespan and need to be renewed within that period
- The **online operational certificate** also has a six-month lifespan and needs to be renewed within that period
- Both certificates are signed by the offline operational key
- Online operational certificate signing request transferred by hand to/from the offline operational certificate servers

# **Accessing the Keying Material**

#### Requires

- Two keyholders
- An operations person
- A witness/master of ceremony (MC)

# Follows a script that is very detailed

- Every step explicitly called out
- Every step initialed by the witness/MC
- Any deviation requires documentation
- Documentation stored in a safe at ARIN HQ by the witness/MC

#### Accessing the safe

- Operations person has access/control to the physical site
- Keyholders unlock the safe and hold the keying material
- Witness/MC ensures that the keyholders are the only ones who physically hold the keying material



#### **POWERED BY PARTICIPATION**

# Questions and Comments? Thank you